ANNEX IV: Syllabus of the Training Program (Tentative)

S-Group (Seismology Group)

Category	Title	Subtitle	Contents
Orientation	Orientation	Overview of	Introductory lectures for Seismology and Tsunami
		Earthquake, Tsunami,	Groups are given by staff members of IISEE. Basic
		and Disasters	concepts and general scope of seismology, earthquake
			phenomena, strong motion study, seismic hazard and
			risk, and tsunami, etc. are described.
		Ethics and Literacy	We provide explanations on subjects to learn about
		for Scientific Studies	research ethics and literacy required for scientific
			studies.
Basic Subjects	Information	Computer	Practices on FORTRAN programming for scientific
Related with	Technology		computing and on UNIX and GMT are given using PC
Earthquake and	Related with		The basic of Python 3 programming is provided.
Disasters	Earthquakes and	Theory of Seismic	Basic expressions for strain and stress relations are
	Disasters	Waves	induced from the fundamental concept of the property
			of elasticity. Mathematical background of the theory of
			elasticity is discussed from the standpoint of specific
			problems such as equilibrium conditions, strain energy and transmissions of elastic waves. Reflection and
			refraction of plane waves are explained. P and S waves
			velocity distribution is discussed.
		Surface Waves	Crust and upper mantle structure inferred from surface
		Surface waves	wave analysis, including its analogies with tsunamis
			(surface gravity waves in the ocean) is explained.
		Scattering and	Stochastic modeling and measurement of small-scale
		Attenuation	heterogeneities and intrinsic attenuation of seismic
			waves in the crust are explained.
	Earthquake	Earthquake	Basic theory of seismometers is explained. A method
	Phenomenology	Observation (1), (2)	for calibration of conventional type of short period
			seismometer is presented with a practical training. Data
			acquisition and seismic telemetry systems are
			explained.
		Local Earthquake	Analyses of seismograms obtained by local networks,
		Analyses (1)	e.g., Wadati diagram, particle motion, apparent
			velocity, hypocenter determination, and magnitude.
		Local Earthquake	Practical analyses of seismograms obtained by local
		Analyses (2)	network, e.g., Earthquake location for a homogeneous
			medium, location errors, iterative weighting, and
		Teleseismic Phases	application.
		and Magnitudes	Teleseismic phases and typical magnitude scales are explained. The Earth's normal modes and their
		and magnitudes	relations to seismic phases are introduced.
		Forthanalsa Forty	The methodologies of Earthquake Early Warning
		Earthquake Early Warning (1)	(EEW) are explained, and then actual operation of the
		waining (1)	system is discussed. Experience of actual operation of
			nationwide EEW system by the Japan Meteorological
			Agency is also given.
		Earthquake Early	This lecture introduces the general concept of an
		Warning (2)	earthquake early warning (EEW) system and its
			practical examples. This lecture also has an exercise
			using PC. We will determine the P-wave arrival time
			and compute amplitude and period parameters which
			will be used for EEW system.
		Seismicity and	This course aims to give a basic introduction to
		Statistics	statistical techniques that are useful in the study of
			seismicity. Several statistical techniques and models
			are introduced and discussed alongside the well-known
			empirical laws. This course also provides hands-on

			practical sessions using computer software to analyze
			seismic activity data.
		Crust and Upper	Crust and upper mantle structure inferred from
		Mantle Structure	explosion seismic and surface methods are explained.
		Crustal Deformation	Introductory course of crustal deformation including
			geodetic survey and continuous measurement with
			special references to the problems on modeling of
			earthquake and volcanic events and earthquake
	G : 0D :		forecasting.
	Seminar of Basi	c Seismology	Discussion, presentation and practice for the topics of Basic Seismology
Advanced Subjects	Earthquake	Earthquake Generation	Earthquake dynamics and scaling laws are explained.
Related with	Circumstance	and Forecasting (1)	Earthquake preparation processes and researches on
Earthquake and			short-term prediction are introduced.
Disasters		Earthquake Generation	Earthquake cycles and long- and intermediate-term
		and Forecasting (2)	prediction are introduced.
		Mathematics for	Basic concepts and technique of applied mathematics
		Seismology	used often in the field of seismology are explained.
			Subjects include linear differential equations, Fourier
			analysis, matrix algebra and vector analysis. Practice
		E 1M 1 '	of applied mathematics is also given.
		Focal Mechanism	Basic knowledge and practice for determination of
		M A	focal mechanism by P-wave first motion method.
		Moment Tensor Analysis	Basic knowledge and practice for determination of focal mechanism by moment tensor inversion method.
		Earth and Dista	
		Earthquake and Plate Tectonics	The basic concept of plate tectonics is presented. Methods to obtain plate motions are described.
			_
		Earthquake Source Process	The main purpose of this lecture is to provide you with basic earthquake source models and conception of
		1100088	earthquake source process, showing techniques to
			synthesize seismic waves from the source models and
			to determine the parameters that can describe
			earthquake source process.
	Characteristics	Data Processing	Theory and practice of the least squares method used
	of Earthquake		for seismological analyses and those of Discrete
	Disasters		Fourier transform and digital filter are introduced.
		Study Tour of Earthquake	Study tours to institutes which have observational
		Monitoring	networks to monitor earthquakes are conducted.
		Real Time Determination	Real time determination of source parameters (local
		of Source Parameter	event) is introduced.
		Determination of	Broadband moment magnitude (Mwp) is a magnitude
		Broadband Moment	determined by processing of first arriving P-waves, and
		Magnitude	has been adopted by tsunami warning centers. First,
			this magnitude scale is explained in the lecture. Then,
			computer practices to determine this magnitude are provided.
		Effect of Surface	Effects of surface geology on seismic motion (ESG)
		Geology on Seismic	are explained by showing results of ground motion
		Motion (1)	case studies: amplification mechanisms of seismic
		\	waves, actual examples of site amplifications at sites
			with various site conditions, relations with earthquake
			damage.
		Effect of Surface	Subsurface explorations and strong motion synthetic
		Geology on Seismic	techniques are explained in detail.
		Motion (2)	
		Seismic Tomography	Theory and application of seismic tomography in local,
			regional, and global scales are explained. Practice on
			computer is also given.

	1		
		Numerical Simulation of	Basic theory of seismic wave propagation and
		Seismic Wave	numerical methods for solving the elastic equations are
		Propagation	explained. Seismic wave propagation is
			demonstrated by animation made by computer.
			Practice on the numerical simulation is given by using
	G : 1 m :		PC.
	Special Topics	Observation Visits	Observation tour to the institutes that have notable
			activities in the field of Earth Sciences.
		Tsunami and Earthquake	Basic concept and overview of tsunamis, including
			tsunami generation, propagation and tsunami warning
			and hazard reduction systems.
		Earthquake Geology	Geological subjects related to earthquake prediction,
			hazard assessment and countermeasures.
		Japanese ODA Policy and	Japanese ODA policy and implementation and the
		Development Assistance	international trend of development assistance related
		Related with Disaster	with disaster management activities including poverty
		Management	and gender issues are explained.
		Seminar of Earthquake	Methodology and practice for Project Management
		Disaster Management	Cycle and its facilitation techniques.
		Policy	
		lied Seismology	Discussion, presentation and practice for the topics of Applied Seismology
Earthquake Hazard	Earthquake	Soil Test and Survey	Geotechnical field investigation and laboratory testing
and Risk	Hazard		methods are discussed in this lecture. An emphasis is
Assessment	Assessment A		placed on providing the information about currently
			used practical methods.
		Strong Earthquake	General procedures and system of a strong-motion
		Motion Observation	earthquake observation are presented. Participants are
			introduced to the principle of strong-motion
			accelerometers (SMAC), data acquisition systems and
			data analysis procedures. Application of strong
			earthquake ground motion to seismic-resisting design is explained.
		Soil Dynamics	Fundamental properties of soil such as non-linearity
		Son Dynamics	and constitutive law are reviewed. Dynamic behavior
			of soil deposits and analytical method are explained
			with evaluation of material constants. Liquefaction of
			sand deposits is discussed and countermeasures against
			liquefaction are introduced.
		Strong Ground Motion	Seismic Hazard Assessment is discussed, that is an
		Study I (Probabilistic	estimation of the likelihood of an earthquake
		Seismic Hazard Analysis)	occurrence and its magnitude in and around the
			location of interest and of the severity of strong ground
			motions expected for a certain return period.
		Strong Ground Motion	Strong-motion seismology is concerned with high
		Study II (Strong Motion	frequency seismic waves from large earthquakes. Its
		Seismology)	ultimate goal is to predict strong ground motion from
		6,7	the basic understanding of fault mechanics and seismic
			wave propagation in the Earth.
	Earthquake	Microtremor Observation	Practice in the field and analysis are introduced for
	Hazard	(1)	microtremor that is one of the useful information to
	Assessment B		evaluate the characteristics of earthquake ground
			motion.
		Microtremor Observation (2)	Field practice of microtremor array observation
		Simulation of Seismic	Method to estimate the strong ground motion at the
		Ground Motion	engineering bedrock based on the empirical formulas is
			explained.
		International Seminar for	Observation Visit to Life Safety Learning Center, Edo-
		Disaster Management	Tokyo Museum etc.
			

		Geophysical Prospecting	Principles of seismic refraction and reflection and their applications to the real field are discussed. Field Practice is given.
		Seismic Micro-zonation	This lecture gives an introduction to seismic microzoning technique by presenting the methods to estimate the distribution of the local and regional seismic hazard, explaining the preparation process of seismic scenarios, describing the applications of microzoning results, and discussing the future of microzoning. Various examples of actual studies are also presented.
	Seminar of Earth Management P		Methodology and practice for Project Management Cycle and its facilitation techniques.
Case Studies	Practice for Earthquake	Study trips	Study trip to north-eastern part of Japan (Tohoku) for a week and to western part of Japan (Kansai) for a week.
	Disaster – Recovery Management Policy I, II & III	Practice for the topics of Earthquake Disaster Management	Three colloquiums are planned: 1) for the report on the seismic observation and its results in the countries of each participant, 2) for the practice of reading scientific papers, and 3) for explaining the plan of individual study.
Individual Study	Individual Study		During individual study period, each participant makes a research on a specific subject and writes a paper under the direction of an instructor. The subject is selected in the list shown in ANNEX I.
Disaster Management Policy (for Master Program)	Disaster Management Policies A: from Regional and Infrastructure Aspect		This course deals with the various aspects of disaster management policies from the viewpoint of nation-wide or wide range regional and Infrastructure development. The course consists of five parts: 1) birdview lectures to overlook the philosophies and principles of disaster management policies, 2) fieldwise specialized lectures on practical measures against natural disasters, 3) a one day site-visiting in central Tokyo, 4) presentations of student groups and overall discussions, and 5) joint fieldwork and Integrated Student Seminar with Japanese students. The 3rd to 5th are jointly managed with the course of DMP(B) which is coordinated by Prof. SUGAHARA
Disaster Management Policies B: from Urban and Community Aspect			This course aims to provide a broad understanding of disaster risk management policies related to urban, housing and community aspects. It emphasizes application of appropriate and practical measures, reflecting social, economic and environmental conditions of each country. This course also attempts to discuss the following issues: - Basic issues of the disaster management policies - Lessons from the past large disasters in the world - Urban Disaster risk management policy in Japan - Politics and regulations to secure building safety

E- Group (Earthquake Engineering Group)

Category	Title	Subtitle	Contents
Orientation	Orientation	Ethics and Literacy for Scientific Studies	We provide explanations on subjects to learn about research ethics and literacy required for scientific studies.

		Introduction to Earthquake Engineering	Basic concepts and damage aspects by past earthquakes in Japan are presented as an introductory lecture for engineering course.
		Introduction to Seismology	Seismology for earthquake engineers is introduced focusing on the feature of strong ground motion and its generation, propagation and amplification process.
		Computer	The lecture introduces the computer environment at Building Research Institute (BRI) and International Institute of Seismology and Earthquake Engineering (IISEE). Usage and instructions of the provided laptop PC and the preinstalled software are also given in the lecture.
Basic Subjects Related with Earthquake and Disasters	Structural Analysis	Structural Analysis	Fundamental concepts and principles which are utilized in the current structural analysis are introduced in the matrix algebra language. The displacement method and the force method with some extension to the finite element method and the elastic-plastic analysis of structures are discussed in some detail. Also, fundamental theories for non-linear analyses of building structures are introduced. Some member models and basic concepts of the direct stiffness method are discussed. These theories are also learned with some exercises using available software in IISEE.
		Finite Element Method I	The lecture covers 1) Basic concepts of finite element method, 2) Procedures for static linear analysis, 3) Formulation of some elements' matrices and 4) Example programs.
		Finite Element Method II	The lecture covers 1) Aims and Material Modeling, 2) Cracks width analysis and 3) Dynamic Analyses of RC Frames.
		Limit Analysis	Fundamentals of limit analysis (plastic analysis) as well as plastic design of structures are presented. Basic theorems in the limit analysis, safe and unsafe theorems, are introduced, and how to use them when computing the load carrying capacity of a framed structure is illustrated.
		Soil Mechanics	This lecture covers an introduction to fundamental soil mechanics which gives the basis for understanding dynamic behaviors of soil and foundation.
	Seminar of Str	acture Analysis	Discussion, presentation and practice for the topic of Structural Analysis
	Ground Vibration and Structural Dynamics	Structural Dynamics	The objective of this subject is to study the behavior of structures by dynamic loadings. The lecture covers the SDOF (single-degree-of-freedom) system to the MDOF (multi-degree-of-freedom) linear elastic system. The deterministic procedure is discussed in detail with exercises. Furthermore, the lecture introduces computer programming and provides some practices in programming of typical structural dynamic calculations. Participants compute dynamic response of a Single-Degree-Of-Freedom system and response spectra using Fortran 95. Fourier spectrum analysis is also introduced in the lecture.

		Structural Response Analysis Shaking Table Testing	Inelastic earthquake response analyses are explained using SDOF systems with various kind of hysteresis models and some applications of inelastic earthquake response analyses are introduced. Also, member models and structural idealization which are utilized in the current nonlinear structural analysis of buildings are outlined. Examples of dynamic and nonlinear analysis of reinforced concrete structures are presented. Methods for the theoretical interpretation on the results from the numerical analysis are introduced. General concept of structural dynamic test is introduced. Simple shaking table test and free vibration test are practically performed using a small single mass model. Data processing technique is also discussed
		Soil Test and Survey II	through the practice. Some common methods on the field survey of soil deposits and laboratory tests are introduced.
		Effect of Surface Geology on Seismic Motion	Effects of surface geology on seismic motion (ESG) are explained by showing results of ground motion case studies: amplification mechanisms of seismic waves, actual examples of site amplifications at sites with various site conditions, relations with earthquake damage.
		Dynamic Soil Structure Interaction	In case a structure is founded on soft site, its structural behavior is strongly affected by underlying soil with each other. This phenomenon is called "Dynamic Soil-Structure-Interaction (SSI)", and is recognized as being very important for the earthquake resistance design of structure. The physical meaning of the SSI and the influence of SSI on dynamic behaviors of structure are explained.
		Microtremor Observation I	Practice in the field and analysis are introduced for microtremor that is one of the useful information to evaluate the characteristics of earthquake ground motion.
		Microtremor Observation II	Among many techniques for investigating subsurface shear wave velocity structure, microtremor (or ambient vibration) observation is efficient and cost-effective approach for exploration of soils and sediments. In this lecture, basics of microtremor observation techniques and data processing procedures are introduced. Field exercises on single and multiple observations are conducted.
	Seminar of Groot Structural Dyna	und Vibration and	Discussion, presentation and practice for the topic of Ground Vibration and Structural Dynamics
Advanced Subjects Related with Earthquake and Disasters	Seismic Structures	RC Structures I	The structural performance from cracks to collapse about the RC members is predicted by using some equations. The prediction is made by the equations for designs.
		RC Structures II	Detailed structural design procedure of reinforced concrete members for flexure, shear and bond is lectured. Design practice of RC members according to the presented design procedure is conducted.
		RC Structures III	Design of Box-Shaped Wall building and evaluation of seismic performance of RC wall buildings are lectured.
		RC Structures IV	Outline of the seismic design procedure in accordance with the Japanese codes is presented. The related codes in U.S. and New Zealand and the design guidelines currently proposed in Japan are also introduced.

PC Structures General principles of prestressed concrete and several examples of precast prestressed concrete buildings are introduced. Performance of precast prestressed concrete buildings are introduced. Performance of precast prestressed concrete buildings during cent earthquakes is summarized with current seismic design procedure of prestressed concrete buildings for intermined to the concrete buildings in Jupan. Prestressing methods, and calculation of cracking moment and flexural strength of a beam section and electured with employing a consequent program. New seismic design methods being methods being are also introduced with some design examples. Masonry Structures II The lecture presents structural performance and seismic design of Confined Masonry structures, which has been researched in IRI. The lecture also discusses husben design of Confined Masonry structures. It is measured to the present structural performance and seismic design of Confined Masonry structures. It is measured to the presentative design of Seismic design of Prestructures and Seismic design of Confined Masonry Structures are reviewed for several representative design of seismic design of Prestructures are reviewed for several representative design of reinforced concrete hollow concrete block masonry structures are reviewed for several representative design of reinforced concrete hollow concrete block masonry structures. The structures are reviewed for several representative design of reinforced concrete hollow concrete block masonry structures. The structures are structures are structures are structures and the structures and the structures are structures. The structures are structures are structures are structures are structures are structures. The structures are structures are structures are structures are structures are structures. The structures are structures. The structures are structures are structures are struct	Steel Structures	Outline of the design procedure for steel building
examples of precast prestressed concrete buildings art introduced. Performance of precast prestressed concrete buildings during recent earthquakes is summarized with current sciame design procedure of prestressed concrete buildings in Japan. Prestressing methods, and calculation of cracking moment and flexural strength of a beam section are lectured with employing a computer program. New seismic design methods being discussed, for example performance-based design, are also introduced with some design methods being discussed, for example performance-based design, are also introduced with some design examples. Masonry Structures I The lecture presents structural performance and seismic design of Confined Masonry structures, which has been researched in BRI. The lecture also discusses housing construction conditions in the Third World Countries comparing with those of Japan Standard for the surcutural design of restoring for the structural design of restoring force characteristics of masonry wall members. Foundation Engineering Foundation Engineeri		structures in Japan is explained.
Masonry Structures 1 The lecture presents structural performance and scismic design of Confined Masonry structures, which has been researched in BRI. The lecture also discusses housing construction conditions in the Third World Countries comparing with those of Japan. Masonry Structures II First, the concept and the method of seismic design of masonry structures are reviewed for several representative design codes in the world. Also, the "AIJ (Architectural Institute of Japan) Standard for the structural design of reinforced concrete hollow concrete block masonry structures" is introduced as part of the Japanese codes. Second, the seismic behavior of masonry buildings is explained from the aspects of "seismic evaluation of existing mason; buildings" and the "modeling of restoring force characteristics of masonry wall members". Foundation Engineering Design concept and design procedures for static and earthquake loads for several types of foundation i.e. pile, spread and eaisson foundations represented. Furthermore, their characteristics, construction methods, selection procedures, repairing methods, etc. are explained. Underground Structures and Large Soil Deformations Bridge Engineering The lecture covers 1) Buried structures and soil deformations in earthquakes, 2) Earthquakes, 20 Earthquake, 20 Earthquak	PC Structures	examples of precast prestressed concrete buildings are introduced. Performance of precast prestressed concrete buildings during recent earthquakes is summarized with current seismic design procedure of prestressed concrete buildings in Japan. Prestressing methods, and calculation of cracking moment and flexural strength of a beam section are lectured with employing a computer program. New seismic design methods being discussed, for example performance-based design, are also
masonry structures are reviewed for several representative design codes in the world. Also, the "AIJ (Architectural Institute of Japan) Standard for the structural design of reinforced concrete hollow concrete block masonry structures" is introduced as part of the Japanese codes. Second, the seismic behavior of masonry buildings is explained from the aspects of "seismic evaluation of existing masonry buildings" and the "modeling of restoring force characteristics of masonry wall members". Foundation Engineering Foundation Engineering Design concept and design procedures for static and earthquake loads for several types of foundation i.e., pile, spread and caisson foundation is. explained. Underground Structures and Large Soil Deformations The lecture covers 1) Buried structures and soil deformations in earthquakes, 2) Key parameters governing performances of buried structures and future problems and 4) Other topics. Bridge Engineering Overall view of steel and concrete bridges and historical development are presented. Essential engineering issues for steel and concrete bridges are explained. Dam Structures The types of dams including concrete arch, gravity, and embankment dams are explained first. Next, design concepts of each type are given. The design of bams to resist earthquakes, dynamic properties of dam materials, and analysis. Partially, behaviors of dams during earthquakes, dynamic properties of dam materials, and analysis. Partially, behaviors of dams during the 1995 Hyogoken-Nanbu Earthquake (Kobe Earthquake) and the 2000 Western Tottori Prefecture Earthquake are explained. Earthquake resistant design for port and harbor structures is explained with some examples of the previous tests. Static tests for RC members are also conducted to observe structural performance. Seminar of Seismic Structures Discussion, presentation and practice for the topic of		The lecture presents structural performance and seismic design of Confined Masonry structures, which has been researched in BRI. The lecture also discusses housing construction conditions in the Third World Countries comparing with those of Japan.
earthquake loads for several types of foundation i.e. pile, spread and caisson foundations are presented. Furthermore, their characteristics, construction methods, selection procedures, repairing methods, etc. are explained. Underground Structures and Large Soil deformations in earthquakes, 2) Key parameters governing performances of buried structures in earthquakes, 3) Earthquake resistant design of buried structures and future problems and 4) Other topics. Bridge Engineering Overall view of steel and concrete bridges and historical development are presented. Essential engineering issues for steel and concrete bridges and historical development are presented. Essential engineering issues for steel and concrete bridges are explained. Dam Structures The types of dams including concrete arch, gravity, and embankment dams are explained first. Next, design concepts of each type are given. The design of dams to resist earthquakes is discussed with the performance of dams during earthquakes, dynamic properties of dam materials, and analysis. Particularly, behaviors of dams during the 1995 Hyogoken-Nanbu Earthquake (Kobe Earthquake) and the 2000 Western Tottori Prefecture Earthquake are explained. Port & Harbor Structures and Tsunami Engineering Structural Testing Objectives, testing techniques, loading and measuring techniques are presented with some examples of the previous tests. Static tests for RC members are also conducted to observe structural performance. Seminar of Seismic Structures Discussion, presentation and practice for the topic of	Masonry Structures II	masonry structures are reviewed for several representative design codes in the world. Also, the "AIJ (Architectural Institute of Japan) Standard for the structural design of reinforced concrete hollow concrete block masonry structures" is introduced as part of the Japanese codes. Second, the seismic behavior of masonry buildings is explained from the aspects of "seismic evaluation of existing masonry buildings" and the "modeling of restoring force characteristics of masonry wall members".
and Large Soil Deformations deformations in earthquakes, 2) Key parameters governing performances of buried structures in earthquakes, 3) Earthquake resistant design of buried structures and future problems and 4) Other topics. Overall view of steel and concrete bridges and historical development are presented. Essential engineering issues for steel and concrete bridges are explained. Dam Structures The types of dams including concrete arch, gravity, and embankment dams are explained first. Next, design concepts of each type are given. The design of dams to resist earthquakes is discussed with the performance of dams during earthquakes, dynamic properties of dam materials, and analysis. Particularly, behaviors of dams during the 1995 Hyogoken-Nanbu Earthquake (Kobe Earthquake) and the 2000 Western Tottori Prefecture Earthquake are explained. Port & Harbor Structures and Tsunami Engineering Earthquake resistant design for port and harbor structures is explained with some examples of actual earthquake damage. Structural Testing Objectives, testing techniques, loading and measuring techniques are presented with some examples of the previous tests. Static tests for RC members are also conducted to observe structural performance. Seminar of Seismic Structures Discussion, presentation and practice for the topic of	Foundation Engineering	earthquake loads for several types of foundation i.e. pile, spread and caisson foundations are presented. Furthermore, their characteristics, construction methods, selection procedures, repairing methods, etc.
Bridge Engineering Overall view of steel and concrete bridges and historical development are presented. Essential engineering issues for steel and concrete bridges are explained. Dam Structures The types of dams including concrete arch, gravity, and embankment dams are explained first. Next, design concepts of each type are given. The design of dams to resist earthquakes is discussed with the performance of dams during earthquakes, dynamic properties of dam materials, and analysis. Particularly, behaviors of dams during the 1995 Hyogoken-Nanbu Earthquake (Kobe Earthquake) and the 2000 Western Tottori Prefecture Earthquake are explained. Port & Harbor Structures and Tsunami Engineering Structural Testing Structural Testing Overall view of steel and concrete bridges are explained. The types of dams including concrete arch, gravity, and embankment dams are explained first. Next, design concepts of dams during tentiquakes, dynamic properties of dams during the 1995 Hyogoken-Nanbu Earthquake (Kobe Earthquake are explained. Earthquake resistant design for port and harbor structures is explained with some examples of actual earthquake damage. Objectives, testing techniques, loading and measuring techniques are presented with some examples of the previous tests. Static tests for RC members are also conducted to observe structural performance. Seminar of Seismic Structures Discussion, presentation and practice for the topic of	and Large Soil	deformations in earthquakes, 2) Key parameters governing performances of buried structures in
Dam Structures The types of dams including concrete arch, gravity, and embankment dams are explained first. Next, design concepts of each type are given. The design of dams to resist earthquakes is discussed with the performance of dams during earthquakes, dynamic properties of dam materials, and analysis. Particularly, behaviors of dams during the 1995 Hyogoken-Nanbu Earthquake (Kobe Earthquake) and the 2000 Western Tottori Prefecture Earthquake are explained. Port & Harbor Structures and Tsunami Engineering Structural Testing Objectives, testing techniques, loading and measuring techniques are presented with some examples of the previous tests. Static tests for RC members are also conducted to observe structural performance. Seminar of Seismic Structures Discussion, presentation and practice for the topic of	Bridge Engineering	Overall view of steel and concrete bridges and historical development are presented. Essential engineering issues for steel and concrete bridges are
and Tsunami Engineering structures is explained with some examples of actual earthquake damage. Structural Testing Objectives, testing techniques, loading and measuring techniques are presented with some examples of the previous tests. Static tests for RC members are also conducted to observe structural performance. Seminar of Seismic Structures Discussion, presentation and practice for the topic of		The types of dams including concrete arch, gravity, and embankment dams are explained first. Next, design concepts of each type are given. The design of dams to resist earthquakes is discussed with the performance of dams during earthquakes, dynamic properties of dam materials, and analysis. Particularly, behaviors of dams during the 1995 Hyogoken-Nanbu Earthquake (Kobe Earthquake) and the 2000 Western Tottori Prefecture Earthquake are explained.
conducted to observe structural performance. Seminar of Seismic Structures Discussion, presentation and practice for the topic of	and Tsunami Engineering	structures is explained with some examples of actual earthquake damage. Objectives, testing techniques, loading and measuring techniques are presented with some examples of the
	Seminar of Seismic Structures	conducted to observe structural performance.

	Seismic Evaluation and Seismic Design Code	Seismic Design Codes Design Earthquake Ground Motion and	Participants investigate the design concept and methods of the selected seismic codes in the world. Presentation and discussion are given for comparison of the surveyed codes. Differences in each code are discussed. Also, recent advanced concepts of seismic design codes are introduced. Seismic design code of Japan is introduced. Some international seismic design codes are also introduced
		Seismic Force	and compared with each other.
		Simulation of Seismic Ground Motion	Methodology of how to generate design earthquake ground motion for engineering purpose is explained. In general, the earthquake load is considered as design seismic force. However, some buildings for special purposes are required to examine structural safety using design ground motions in time domain. A conventional methodology used for actual seismic design works is introduced.
		Seismic Micro-Zonation	This lecture introduces to seismic micro-zoning technique by presenting the methods to estimate the distribution of the local and regional seismic hazard, explaining the preparation process of seismic scenarios, describing the applications of micro-zoning results, and discussing the future of micro-zoning. Various examples of actual studies are also presented.
		Dynamic Aseismic Design	Dynamic aseismic design procedure is introduced. Problems which frequently occur during the design of nuclear power plants and high-rise buildings are presented with some examples.
		Seismic Isolation	Seismic isolation system is explained as one of structural response control methods. The Seismic isolation system is most effective to reduce the response and improve safety of a superstructure. Principles of the seismic isolation, merits and demerits of the seismic isolation, and behaviors of buildings with the seismically isolated buildings during earthquake are discussed.
		Structural Response Control	Basic theory on structural seismic response control and its practical applications in Japan are presented.
		Seismic Design and Retrofit of Bridges	This lecture introduces concepts of seismic design method of highway bridges in Japan. The lecture starts from lessons learned from damage experiences in the past extreme earthquakes. Outline and concept of seismic design specifications of highway bridges in Japan are followed. Seismic assessment and retrofit design of existing bridges are presented.
	Seminar of Seisi Seismic Design	nic Evaluation and	Discussion, presentation and practice for the topic of Seismic Evaluation and Seismic Design Code
Earthquake Hazard and Risk	Earthquake Hazard	Soil Test and Survey I	Soil investigation has become an important component of construction from the viewpoint of safety. Soil test
Assessment	Assessment A		helps to determine physical characteristics in order to design foundations for structures. Outline of Geotechnical investigation method is introduced in this lecture.

	Strong Earthquake Motion Observation	Strong motion observation plays important role in the fields of earthquake engineering and building engineering. This lecture explains history and the current situation of the strong motion observation in Japan. The strong motion network of Building Research Institute and the recent research works are also introduced. Moreover, the application of the research results using strong motion data for the seismic design and the earthquake disaster mitigation are described.
	Soil Dynamics	Fundamental properties of soil such as non-linearity and constitutive law are reviewed. Dynamic behavior of soil deposits and analytical method are explained with evaluation of material constants.
	Strong Ground Motion Study I (Probabilistic Seismic Hazard Analysis)	Seismic hazard assessment is discussed, that is an estimation of the likelihood of an earthquake occurrence and its magnitude in and around the location of interest and of the severity of strong ground motions expected for a certain return period.
	Strong Ground Motion Study II (Strong Motion Seismology)	Strong-motion seismology is concerned with high frequency seismic waves from large earthquakes. Its ultimate goal is to predict strong ground motion from the basic understanding of fault mechanics and seismic wave propagation in the Earth.
Seminar of Earth	quake Hazard Assessment	Discussion, presentation and practice for the topic of Earthquake Hazard Assessment
	Structural Reliability	The lecture covers 1) Introduction to reliability concept, 2) Probability of failure as a measure for the safety degree, 3) Extreme value distributions as probability model for load intensity, 4) Load and resistance factor format based on the second moment reliability and 5) Target safety degree due to the optimum reliability.
	System Identification in Vibration Analysis	This subject introduces several system identification methods to determine structural characteristics such as natural periods and damping ratios from measuring data of buildings.
	Seismic Evaluation and Rehabilitation	Seismic capacity evaluation and seismic rehabilitation (retrofit) of existing buildings are introduced with emphasis on our practice after the 1995 Hyogoken-Nanbu Earthquake (Kobe Earthquake).
	Urban Earthquake Disaster Mitigation System	Mechanism and various impacts of earthquake damage in urban areas are analyzed considering the problems generated by urbanization of the area. Based upon the analysis above, issues for establishing proper countermeasures for disaster mitigation are discussed.
	Post-Earthquake Quick Inspection, Damage Evaluation and Rehabilitation	Post-earthquake quick inspection for risk evaluation of secondary disasters is introduced with basic concept of evaluation methods in Japan, U.S. and Europe, and detail procedure and criteria of Japanese method including application example in Turkey. Post-earthquake damage evaluation for decision of rehabilitation strategy, and rehabilitation technique examples for damaged buildings are also introduced.
	Seminar of International Disaster Prevention	Observation Visit to Life Safety Learning Center, Edo- Tokyo Museum etc.
Seminar of Earth	nquake Risk Assessment	Discussion, presentation and practice for the topic of Earthquake Risk Assessment

Special Topics	Tsunami Load and Structural Design of Tsunami Shelter	The lecture covers 1) Observed Buildings Damage Pattern by Tsunami in Great East Japan Earthquake, 2) Introduction of Design Tsunami Loads in Past Guidelines and New Design Guideline, and 3) A Study on Design Flow and an Example of Tsunami Shelters.
	Japanese ODA Policy and Development Assistance Related with Disaster Management	Japanese ODA policy and implementation and the international trend of development assistance related with disaster management activities including poverty and gender issues are explained.
	Seminar of Earthquake Disaster Management Policy	Methodology and practice for Project Management Cycle and its facilitation techniques.
Case Study	Practice for Earthquake Disaster – Recovery Management Policy I, II & III Study Trips	Three colloquiums are planned: 1) for seismic codes and past seismic damage of buildings in the countries of each participant, 2) for the practice of reading scientific papers, and 3) for explaining the plan of individual study. Study trip to northern part of Japan (Tohoku) for a
	Practice for Seminar of Earthquake Disaster Management	week and to western part of Japan (Kansai) for a week. Practice for the topics of Earthquake Disaster Management
Individual Study	Individual Study	During individual study period, each participant makes a research on a specific subject and writes a paper under the direction of an instructor. The subject is selected in the list shown in ANNEX I.
Disaster Management Policy (for Master Program)	Disaster Management Policies A: from Regional and Infrastructure Aspect Disaster Management Policies B: from	This course deals with the various aspects of disaster management policies from the viewpoint of nation-wide or wide range regional and Infrastructure development. The course consists of five parts: 1) bird-view lectures to overlook the philosophies and principles of disaster management policies, 2) field-wise specialized lectures on practical measures against natural disasters, 3) a one day site-visiting in central Tokyo, 4) presentations of student groups and overall discussions, and 5) joint fieldwork and Integrated Student Seminar with Japanese students. The 3rd to 5th are jointly managed with the course of DMP(B) which is coordinated by Prof. SUGAHARA.
	Urban and Community Aspect	disaster risk management policies related to urban, housing and community aspects. It emphasizes application of appropriate and practical measures, reflecting social, economic and environmental conditions of each country. This course also attempts to discuss the following issues: - Basic issues of the disaster management policies - Lessons from the past large disasters in the world - Urban Disaster risk management policy in Japan - Politics and regulations to secure building safety

T- Group (Tsunami Group)

Group (1sunum Group)			
Category	Title	Subtitle	Contents
Orientation	Orientation	Overview of Earthquake, Tsunami, and Disasters	Introductory lectures for Seismology and Tsunami Groups are given by staff members of IISEE. Basic concepts and general scope of seismology, earthquake phenomena, strong motion study, seismic hazard and risk, and tsunami, etc. are described.
		Tsunami and Earthquakes	Basic concept and overview of tsunamis, including tsunami generation, propagation and tsunami warning and hazard reduction systems.

		Ethics and Literacy for Scientific Studies	We provide explanations on subjects to learn about research ethics and literacy required for scientific studies.
Basic Subjects Related with Earthquake and Disasters	Information Technology Related with Earthquakes and Disasters	Computer	Practices on FORTRAN programming for scientific computing and on UNIX and GMT are given using PC. The basic of Python 3 programming is provided.
		Theory of Seismic Waves	Basic expressions for strain and stress relations are induced from the fundamental concept of the property of elasticity. Mathematical background of the theory of elasticity is discussed from the standpoint of specific problems such as equilibrium conditions, strain energy and transmissions of elastic waves. Reflection and refraction of plane waves are explained. P and S waves velocity distribution is discussed.
		Surface Waves	Crust and upper mantle structure inferred from surface wave analysis, including its analogies with tsunamis (surface gravity waves in the ocean) is explained.
	Earthquake Phenomenology	Earthquake Observation (1), (2)	Basic theory of electro-magnetic seismometer is explained. A method for calibration of conventional type of short period seismometer is presented. Practical training for the calibration is also planned. Data acquisition and seismic telemetry systems are explained.
		Local Earthquake Analyses (1)	Analyses of seismograms obtained by local networks, e. g., Wadati diagram, particle motion, apparent velocity, hypocenter determination, and magnitude.
		Local Earthquake Analyses (2)	Practical analyses of seismograms obtained by local network, e.g., Earthquake location for a homogeneous medium, location errors, iterative weighting, and application.
		Teleseismic Phases and Magnitudes	Teleseismic phases and typical magnitude scales are explained. The Earth's normal modes and their relations to seismic phases are introduced.
		Earthquake Early Warning (1)	The methodologies of Earthquake Early Warning (EEW) are explained, and then actual operation of the system is discussed. Experience of actual operation of nationwide EEW system by the Japan Meteorological Agency is also given.
		Earthquake Early Warning (2)	This lecture introduces the general concept of an earthquake early warning (EEW) system and its practical examples. This lecture also has an exercise using PC. We will determine the P-wave arrival time and compute amplitude and period parameters which will be used for EEW system.
		Seismicity and Statistics	This course aims to give a basic introduction to statistical techniques that are useful in the study of seismicity. Several statistical techniques and models are introduced and discussed alongside the well-known empirical laws. This course also provides hands-on practical sessions using computer software to analyze seismic activity data.
		Crust and Upper Mantle Structure	Crust and upper mantle structure inferred from explosion seismic and surface methods are explained.
		Crustal Deformation	Introductory course of crustal deformation including geodetic survey and continuous measurement with special references to the problems on modeling of earthquake and volcanic events and earthquake forecasting.
	Seminar of Basic Seismology		Discussion, presentation and practice for the topics of Basic Seismology

Advanced Subjects Related with Earthquake	Earthquake Circumstance	Earthquake Generation and Forecasting (1)	Earthquake dynamics and scaling laws are explained. Earthquake preparation processes and researches on short-term prediction are introduced.
and Disasters		Earthquake Generation and Forecasting (2)	Earthquake cycles and long- and intermediate-term prediction are introduced.
		Mathematics for Seismology	Basic concepts and technique of applied mathematics used often in the field of seismology are explained. Subjects include linear differential equations, Fourier analysis, matrix algebra and vector analysis. Practice of applied mathematics is also given.
		Focal Mechanism	Basic knowledge and practice for determination of focal mechanism by P-wave first motion method.
		Moment Tensor Analysis	Basic knowledge and practice for determination of focal mechanism by moment tensor inversion method.
		Earthquake and Plate Tectonics	The basic concept of plate tectonics is presented. Methods to obtain plate motions are described.
		Earthquake Source Process	The main purpose of this lecture is to provide you with basic earthquake source models and conception of
			earthquake source process, showing techniques to synthesize seismic waves from the source models and to determine the parameters that can describe earthquake source process.
	Theory of Tsunami	Tsunami Simulation	Hands-on practices to calculate tsunami waveforms and tsunami height are given by using Linux WS and Windows PC. In order to help the interpretation of simulation results, visualization technique using mapping software are also introduced.
		Data Processing	Theory and practice of the least squares method used for seismological analyses and those of Discrete Fourier transform and digital filter are introduced.
		Practice for Theory of Tsunami	Specific tasks and subjects on Practice for Theory of Tsunami are given considering interests and backgrounds of participants.
		Tsunami Magnitude and Catalogue	History of large tsunamis in the world is explained and discussed. Existing tsunami catalogues are also studied. The size of tsunami is described by various magnitude scales. Mechanisms of tsunami earthquakes are also learned. Various tsunami generated by non-earthquake origins, such as landslides or volcanic activities, are also studied.
		Mathematics for Tsunami	Practices on applied mathematics used often in the field of tsunami are given.
		Hydrodynamics for Tsunami	The basic equation of fluid dynamics, general ocean wave theory, tsunami generation theory, and non-linear wave theory of tsunamis are explained.
		Tsunami Generation and Propagation	Tsunami generation from earthquake fault motion and tsunami propagation: Both forward and inverse modelings are explained.
		Tsunami Source	To calculate travel time of tsunami some computer practices are given. Basic concept to estimate a tsunami source area from arrival times of observed tsunami is explained. Hands-on practices to estimate tsunami source are also given.
		Geology for Tsunami	Basic techniques for detecting geological and geomorphological evidences of paleo-tsunami and paleo-earthquake are explained. Subjects include coastal sedimentology, coastal geomorphology and Quaternary geochronology.
Tsunami Hazard and Risk Assessment	Tsunami Hazard Assessment	Tsunami Disaster Prevention Administration	Tsunami disaster prevention schemes by local government are introduced. We visit Kesen-numa city along the Sanriku coast and learn about governmental approaches for tsunami disaster prevention.

	1	I C	Di
		Lessons from the Great	Disaster prevention for millennium earthquakes-
		East Japan Earthquake	tsunamis and characteristics of the 2011 Great East
		of March 11, 2011	Japan earthquake – tsunami are introduced.
		Tsunami Disaster	A visit to the Port and Harbor Bureau to study tsunami
		Mitigation Policy and	disaster mitigation policy and risk management in
		Risk Management in	Japan is conducted.
		Japan	
		Introduction of	Various features of tsunamis are explained with
		Tsunami Disaster	hydrodynamic principles. Many kinds of tsunami
		Mitigation	disasters are shown by examples in the past, and
			possible disasters in the future are also estimated.
		Tsunami Hazard	Basics on the tsunami hazards assessment is introduced
		Assessment and the	by reviewing historical and recent tsunami
		Sendai Framework for	hazard/disaster and providing the idea of the risk
		Disaster Risk	analysis. Records of tsunamis in the documentation and
		Reduction	geological evidences are examined to estimate the
		Reduction	frequency.
		Taunami Damaga	Characteristics of tsunami damages are introduced
		Tsunami Damage	
		Survey	through examples of post-tsunami survey results.
			Survey method is explained with the theory. After
			explanations for matters to be attended in field survey,
			survey exercise is conducted.
		Theory of Tsunami	This class aims to understand the logic of source
		Propagation and	program of TUNAMI-N1 and N2 (Linear and Non-
		Inundation Simulation	linear model of tsunami propagation and run-up).
		Numerical Simulation	A finite difference method for the long-wave model is
		of Tsunami Inundation	explained. Simulation exercises for tsunami
		and its Application	propagation and inundation are given.
		Tsunami Hazard	Basic concepts and outline of tsunami hazard map,
		Mapping, Evacuation	method of making tsunami hazard map, use of tsunami
		Planning and	hazard map.
		Simulation	Overview of tsunami evacuation planning and tsunami
			evacuation simulation. Hands on concepts, definitions,
			steps and issues for tsunami evacuation planning.
			Review of methodologies used on tsunami evacuation
			simulation.
		Scenario Earthquakes	You learn a method for setting Scenario earthquakes for
		Scenario Eurinquakes	tsunami situation.
	Tsunami	Tsunami Protection	A field study, in which the tsunami protection facilities
	Countermeasures	Facility	are observed, is included in the course. A field trip to
	Countermeasures	racinty	observe the tsunami trace and to understand the
			damages due to tsunamis is also conducted along the
		Taumami Dama	Sanriku coast.
		Tsunami Damage and	Observation of tsunami damage caused by the Great
		Reconstruction I and II	East Japan earthquake disaster and reconstruction
		T : 01	process.
		Tsunami Observation	Sea level observation method and tidal data analysis are
			introduced. Tidal station tour is also conducted.
		Tsunami Early Warning	Outline of tsunami warning service and tsunami
		System and	estimation are explained.
		Dissemination	
		Practice for Tsunami	Each participant has practices so that he/she can
		Countermeasures	improve understanding on the subject "Tsunami
			Countermeasures." IISEE staff members decide
1			specific tasks and subjects considering interests and
			backgrounds of participants.
		Tsunami Force and	backgrounds of participants. Design formulas of tsunami force are introduced and
		Tsunami Force and Tsunami Resistant	Design formulas of tsunami force are introduced and
		Tsunami Resistant	Design formulas of tsunami force are introduced and some examples to computation of tsunami force are
			Design formulas of tsunami force are introduced and some examples to computation of tsunami force are lectured. An experiment to evaluate the tsunami
		Tsunami Resistant	Design formulas of tsunami force are introduced and some examples to computation of tsunami force are lectured. An experiment to evaluate the tsunami impulsive force is demonstrated during the course. As
		Tsunami Resistant	Design formulas of tsunami force are introduced and some examples to computation of tsunami force are lectured. An experiment to evaluate the tsunami

		Tsunami Deposit Survey	Observation of tsunami damage caused by the Great East Japan earthquake disaster and reconstruction process.
		Tsunami Load and Structural Design of Tsunami Shelter	Observe buildings damage pattern by tsunami in Great East Japan Earthquake. Introduction of design tsunami loads in past guidelines and new design guideline. A study on design flow and an example of Tsunami shelters.
		International Seminar for Disaster Management	Observation Visit to Life Safety Learning Center, Edo- Tokyo Museum etc.
	Special Topics	Study Tour of Earthquake Monitoring	Observation tour to the institutes that have notable activities in the field of Earth Sciences.
		Japanese ODA Policy and Development Assistance Related with Disaster Management	Japanese ODA policy and implementation and the international trend of development assistance related with disaster management activities including poverty and gender issues are explained.
		Seminar of Earthquake Disaster Management Policy	Methodology and practice for Project Management Cycle and its facilitation techniques.
Case Studies	Practice for Earthquake Disaster – Recovery Management Policy I & II	First, Second, and Third Colloquiums	Three colloquiums are planned: 1) for the report on the seismic observation and its results in the countries of each participant, 2) for the practice of reading scientific papers, and 3) for explaining the plan of individual study.
	Practice for Tsunami Disaster Mitigation Policy	Real Time Determination of Source Parameter	Real time determination of source parameters (local event) is introduced.
		Determination of Broadband Moment Magnitude	Broadband moment magnitude (Mwp) is a magnitude determined by processing of first arriving P-waves, and has been adopted by tsunami warning centers. First, this magnitude scale is explained in the lecture. Then, computer practices to determine this magnitude are provided.
		Study Trips	Study trip to northern part of Japan (Tohoku) for a week and to western part of Japan (Kansai) for a week.
	Practice for Seminar of Tsunami Disaster Mitigation Policy		Practice for the topics of Tsunami Disaster Mitigation Policy.
Individual Study	Individual Study		During individual study period, each participant makes a research on a specific subject and writes a paper under the direction of an instructor. The subject is selected in the list shown in ANNEX I.
Disaster Management Policy (for Master Program)	Regional and Infrastructure Aspect olicy for Master rogram)		This course deals with the various aspects of disaster management policies from the viewpoint of nation-wide or wide range regional and Infrastructure development. The course consists of five parts: 1) bird-view lectures to overlook the philosophies and principles of disaster management policies, 2) field-wise specialized lectures on practical measures against natural disasters, 3) a one day site-visiting in central Tokyo, 4) presentations of student groups and overall discussions, and 5) joint fieldwork and Integrated Student Seminar with Japanese students. The 3rd to 5th are jointly managed with the course of DMP (B) which is coordinated by Prof. SUGAHARA.
	Disaster Management Policies B: from Urban and Community Aspect		This course aims to provide a broad understanding of disaster risk management policies related to urban, housing and community aspects. It emphasizes application of appropriate and practical measures, reflecting social, economic and environmental conditions of each country. This course also attempts to

discuss the following issues: - Basic issues of the disaster management policies
- Lessons from the past large disasters in the world
- Urban Disaster risk management policy in Japan
- Politics and regulations to secure building safety